

Neuronal Tissue Models

The Neuronal Tissue Models (T-NEURO) enable the dynamic modeling of EM-induced neuronal activation, inhibition, and synchronization using either complex, multi-compartmental representations of axons, neurons, and neuronal networks with varying channel dynamics, or generic models. [Sim4Life](#) uses the [NEURON](#) solver developed at the Yale University which is ideal for studying interaction mechanisms, evaluating and optimizing neurostimulating devices, and assessing safety issues.

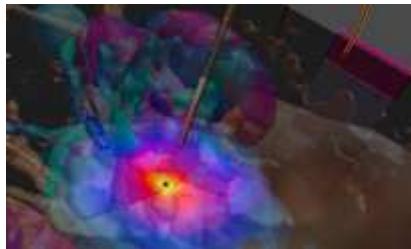
Stimulation of the vagus nerve with a multi-element cuff electrode array.

Application Areas

MRgFUS Neurosurgery
Applications: Tumor
Ablation, Neuropathic Pain
Treatment, Movement
Disorders
FUS-Based Neural
Stimulation

Neuro-Prosthetics (retina,
cochlea, vestibular, motor)
EM Neuro-Stimulation
Neuro-Motoric
Incapacitation

High LF-EM Field Safety
Assessment (e.g., MR
Gradient Coils)
Pacemaker
Temperature Impact on
Neuronal Dynamics


Key Features

Dynamic modeling of EM-induced neuronal activation inhibition & synchronization
Unidirectional coupling with the EM-QS and Thermal solver
SENN model can be applied inside whole body models

Neuronal response modeling in MRI gradient switching fields with RF induced local temperature increases considered.

Interface allows integration of other neuronal models from commonly used databases
User-friendly import & visualization of nerve geometries from commonly used databases
Determining thresholds through titration procedure
Detection of neuronal spikes and their occurrence times

Improved DBS treatment analysis facilitated by the head model with incorporation of the Morel stereotactic atlas of the thalamus.

Novel spatially varying temperature dependence impact on the neuronal dynamics
Capturing & plotting membrane dynamics over time
Easily define pulse sources that correspond to gradient switching fields

Propagation of the transmembrane voltage in a rat hippocampus neuron with a detailed dendritic tree.